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BUBBLES RISING IN A TUBE AND JETS FALLING FROM R NOZZLE

Jean-Marc Vanden-Broeck
Technical Summary Report #2631
January 1984
ABSTRACT
\J;he shape of a two-dimensional bubble rising at a constant velocity U
in a tube of width h is computed. The flow is assumed to be inviscid and
incompressible. The problem {gmgolved numerically by collocation. The
results confirm Garabedian's [2]~>indings. There exists a unique solution for
each value of the Froude number F = U/(ghiza smaller than a critical value
li;?:i éere g denotes the acceleration of gravity. It is found that lii::;’
0.36. In addition the problem of a jet emerging from a vertical nozzle is
congidered. It is shown that the slope of the free surfacebat the separation
Sub & Swb e

points is horizontal for F < F¢ and vertical for F > F¢. Graphs and tables

of the results are included.

AMS (MOS) Subject Classification: 76B10
Key Words: Rising bubble, jet

Work Unit Number 2 - Physical Mathematics

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041.
Also, by the Australian Research Grant Committee and the National Science
Foundation under Grant No. MCS-8001960.

RN SOt ChAC A RS
NGRS AN

29% 1) ¥




0 Mg A i O A I A A O A A AR ER AR L R A R RO L S A A

N
o
gl
3 .r_:. q
LAl A
<. .
:’_'-. SIGNIFICANCE AND EXPLANATION .
f’" We consider the flow of an incompressible, inviscid, heavy liquid past of :
: l
?J . a gas bubble in an infinitely long vertical tube (see Figure 1a). The flow is |
1 !
> 1
'f} assumed to be two-dimensional. This problem was first considered by Birkhoff 1
o i
< - and Carter(1) and Garabedian(z). Birkhoff and Carter(1) suggested that the p
g problem had a unique solution. On the other hand Garabedian(Z) presented !
Y 1
'3:. analytical evidence that the problem had a solution for each value of the :
s 1 *
X Froude number F = U/{ gh)/2 smaller than a critical value F,. Here U is
iﬁ' the velocity at infinity, g the acceleration of gravity and h the width of )
~{- the tube. IlI
AN
SRS q
™ In the present paper we settle the controversy between the results of
AN
-:3 Birkhoff and Carter(1) and those of Garabedian(Z). We compute accurate
‘-::
i;{ solutions by a collocation method. Our results confirm Garabedian's(z)
e findings. There exists a unique solution for each value of F smaller than a i
o critical value F_,. However we found F, = 0.36. This value is about 40 ‘
e,
>
S5 percent higher than that indicated by earlier work on the problem. 1
- )
By .
5% In addition we consider the problem of a jet emerging from a vertical {
- nozzle (see Figures b and 1c). We show that the slope of the free surface at :
%%3 the separation points is horizontal for F < F, and vertical for F > F..
3-';1 i
\-. !
~ i
e !
o~ ‘
o q
T 0 !
L :
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o odes | !
. The responsibility for the wording and views expressed in this descriptive or .
> summary lies with MRC, and not with the author of this report. :
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BUBBLES RISING IN A TUBE AND JETS FALLING FROM A NOZZLE

Jean-Marc Vanden-Broeck ¥

I. Introduction

We consider the two-dimensional flow of an incompressible fluid past a
gas bubble in an infinitely long tube of width h. We assume that the bubble
extends downwards without limit. We choose a frame of reference moving with
the bubble, so that the flow at large distances from the bubble is
characterized by a constant velocity U [see Fig. (1a)]. We choose the
origin of coordinates at the top of the bubble. We assume that the flow is
symmetric about the x-axis and that gravity g is acting in the negative x-
direction. As we shall see that the shape of the bubble is determined by the

Froude number

U

F = R
(':Jh)/2

(1)

This problem was first considered by Birkhoff and Carter1 and by Garabedianz.

Birkhoff and Carter1 attempted to solve the problem numerically. They
assumed that the problem had a unique solution and that the Froude number F
could be obtained as part of the solution. Though they obtained approximate
solutions with F ~ 0.23, the convergence of their procedure was not really
satisfactory.

Garabedian2 presented analytical evidence that the solution is not
unique. He suggested that a solution exists for each value of F smaller
than a critical value F_,. In addition he showed that F, > 0.2363 and

guessed the value Fc = 0,24.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Also, by the Australian Research Grant Committee and the National Science
Foundation under Grant No. MCS-8001960.
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Sketch of a bubble rising in a tube.
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In the present paper we compute accurate numerical solutions by
collocation. Our scheme is an improved version of the procedures proposed by
Birkhoff and Carter‘- Our results confirm Garabedian'32 findings. There
exists a unique solution for each value F smaller than a critical value
F.. However we found that F, = 0.36. This value is about 40 percent higher
than the value guessed by Garabedianz.

The flow configuration of Fig. 1(a) can also serve to model a jet
emerging from a nozzle [see Fig. 1(b)]. As x tends to infinity, the
velocity is assumed to approach a constant U. It follows from the symmetry
of the flow configurations that the portion SJ of the bubble surface in
Figure 1a is identical, for the same value of F, to the portion SJ of the
jet surface in Figure 1b. Therefore our results for the rising bubble imply
that the jet of Figure 1b exists for all values of F < F,. For F > F,,
this flow configuration fails to exist.

For F > F, we sought a solution in which the flow separates
tangentically from the nozzle ([see Fig. 1{(c)]. We found that there exists a
unique solution of the type sketcheq in Fig. 1(c)] for each value of
F>F,. For F < F, these solutions fail to exist.

From our results we conclude that there exists a unique jet for each
value of F. For F > F, the slope of the free surface is vertical at the
separation points S and S8' For F < F, the slope of the free surface is
horizontal at the separation points and the velocity at these points is equal
to zero.

The problem is formulated in Sec. II. The numerical procedure is

described in Sec. III and the results are discussed in Sec. 1V.
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IIl. Formulation

Let us consider a two-dimensional jet emerging from a nozzle of width
h [see Figs. 1(b) and 1(c)]. As x + ®, the velocity approaches a
constant U. The fluid is assumed to be incompressible and inviscid.
We define dimensionless variables by choosing h as the unit length
and U as the unit velocity. We introduce the potential function ¢ and the
stream function ¢. Without loss of generality we choose ¢ = 0 at
x=y=0 and ¥ =0 on the streamline IJ. It follows from the choice of
the dimensionless variables that y = -1 on 1J'. The complex potential
plane is sketched in Fig. 2.
We denote the complex velocity by § = u - iv and we define the function
T~ 16 by
g=u-iv= A (2)
We shall seek T - i0 as an analytic function of f = ¢ + iy in the strip
-1 < ¥ < 0.
On the surface of the jet, the Bernoulli equation yields
% q2 + gx = % qz . (3)

Here q is the flow speed, g the acceleration of gravity and q, the

velocity at the separation points. In dimensionless variables (3) becomes

27

e + 35 X = on SJ and Ss'0' . (4)
F

cN IﬂnN

Here F is the Froude number defined by (1).
It is convenient to eliminate y and q, from (4) by differentiating

(4) with respect to ¢. Using the relation

T 9¢ u-iv
we obtain
2t 3t + 1 e-T cos 8 =0 on SJ and S8'0' . (6)
¢ F2
-6~
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The kinematic conditions on IS and 1I8' yield
=0 ¢y=-1 $ <0 (7)
6 =0 v=20 ¢ <0 ., (8)
The flow configuration of Fig. 1(b) is characterized by stagnation points
at S§ and S'. This yields the additional conditions

t=-, 86=01 at ¢ =0, v =0

2 (9)

! T=-,0=-1 at ¢ =0, = -1 .
- "

The flow configuration of Figure 1c is characterized by finit .ri non-
zero velocities at S and S'. This yields the additional condit s
T e, 0 =0 at ¢ =0, =0
(10)
T# 2w, 0=0 at ¢ =0, p = =1 ,
This completes the formulation of the problem of determining T - if.
This function must be analytic in the strip -1 < ¢ < 0 and satisfy the

conditions (6) - (8) and (9) for the flow configuration of Fig. 1(b) and the

conditions (6) ~ (8) and (10) for the flow configuration of Fig. 1(c).
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III, Numerical procedure

Following Birkhoff and Carter1 we define the new variable t by the

relation

i RPN |
e 2 (t + t) . (11)

This transformation maps the flow domain onto the unit circle in the complex
t-plane so that the walls of the nozzle go onto the real diameter and the free
surfaces onto the circumference (see Fig. 3).

In order to obtain solutions for the flow configuration of Fig. 1(b), we

note that

z~ n(1 £ 1t 3 as ¢+ i (12)

T~1%t¢t as t+ 31 (13)

1

(see Birkhoff and Carter for details). Therefore we define the function

i(t) by the relation

RET 173 (4 - £2)e8(t)

= --tn c(1 + 213 ¢-tn &)1 (4 . (14)

Here C is an arbitrary constant between 0 and 0.5. We choose C = 0,2,
The function {i(t) is bounded and continuous on the unit circle and analytic
in the interior. The conditions (7) and (8) show :that f(t) can be expanded

in the form of a Taylor expansion in even powers of t. Hence

et-ie - 2n

st-tn et + 21t 0 (- et ] a2 L (1)
n=1

The functions T and 6 defined by (15) satisfy (7) - (9). The
coefficients a, have to be determined to satisfy (6) on 8SJ. The condition
(6) on 8S'J' will then be autotomically satisfied by symmetry.

We use the notation t = |tlel’ go that points on SJ are given by

io
t=e ,0<co0« %- Using (11) we rewrite (6) in the form

~ ~

T cotg © e2

-l e T s F=0 . (16)
2
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Herxe ?(0) and 3(0) denote the values of T and 0 on the free surface

SJ.
We solve the problem approximately by truncating the infinite series in

(15) after N termgs. We find the N coefficients a, by collocation. Thus

we introduce the N mesh points

n 1
o = 2% (xr - 3), I=1,...,8 . _ 7
~ x drt
Using (15) and (17) we obtain [T(O)]0=OI' [9(6)]°=OI and IE;JGSOI in terms

of the coefficients a. Substituting these expressions into (16) we obtain

N nonlinear equations for the N unknowns a,, n = 1,...,N. We solve this
system by Newton's method. Once this system is solved for a given value of
F, we calculate the functions T and 8 by setting |t| = 1 in (14). The
shape of the jet is then found by numerically integrating the relation (5).
We shall refer to this numerical procedure as scheme 1I.

Solutions for the flow configuration of Fig. 1(c) can be obtained by

omitting the factor 1 - tz in (14). Thus (15) becomes

2n

/ 1/3

et -18 ) . (18)

[- ]
exp( ) bt
n=1

= —(~tn c(1 + £2)1"3¢-tn )~

The functions T and @ defined by (18) satisfy (7), (8) and (9). The
coefficients b, have to be found to satisfy (6) on SJ. We truncate the
infinite series in (18) after N terms and determine b , n = 1,...,N by the
collocation method described in scheme I. We shall refer to this numerical
procedure as scheme II.

Solutions for the flow configquration of Figs. 1(b) and 1(c) can also be

obtained by assuming the expansion

- ]
(1+ § a £ . (19)

n=1

et-ie 1/3

= -[=tn c(1 + 2013 (etn )
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It can easily be verified that (19) satisfies (7) and (8). In addition (19)

[ ] «»
satisfies (9) when I dn = -1 and (10) when 2 dn ¥ =1. Therefore (19)
n=1 n=0

is appropriate to describe the flow configuration of Fig. 1(b) as well as the
flow configuration of Fig. 1(c). The infinite series in (19) is truncated
after N terms and the coefficients dn' n=1...,N are determined by the
collocation method described in scheme I. We shall refer to this scheme as

scheme III.
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IV. Discussion of the results

We used scheme I to compute solutions for the flow configuration of Fig.
1(b). We obtained accurate solutions for F < 0.3. However we were unable to
obtain reliable solutions for F > 0.3. Similarly we obtained accurate
solutions for the flow configuration of Fig. 1(c) for F > 0.4 by using
scheme II. However we could not calculate reliable solutions for
F < 0.4,

In order to obtain solutions for 0.3 < F < 0.4, we used scheme III. We
found that scheme III gives accurate solutions for all values of FP. As n
increases the coefficients d, decrease rapidly. For example
a

~ 3-10-3, d3° ~ 6.10-4’ ~ 2010-4l dgo ~ 2"0-5 for F = 0,374, In

10 60

addition the solutions of scheme III agree with those of scheme I for F < 0.3

and with those of scheme II for F > 0.4.

q

c
In Pig. 4 we present values of the velocity T at the separation

point 8 versus ¥. The velocity dc is equal to zero for F < 0.36 and

different from gero for F > 0.36. Therefore
F, = 0.36 . (20)
This value is about 40% higher than the value guessed by Garabedianz.

Profiles of the jet for various values of F are presented in Fig. 5.

For F = o, the free surface reduces to the vertical line y = 0. As F

decreases from infinity, the jet becomes thinner. As F approaches zero, the
thickness of the jet tends to zero and the free surface approaches the
horizontal line x = 0. For F > Fe the slope of the free surface at
x=y=0 is vertical. For F < F, the slope at x =y = 0 4is horizontal.
For all values of F, the free surface approaches the vertical line y =
% as x * =%, Therefore the jet is described far downstream by the slender

jet theory of Keller and Geer3. This theory shows that
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u-=-1ive~ =-V(x) as x + =» , (21)

. Here V(x) is real and positive. Conservation of mass and equation (4) yield

the relations

(1=-2y)v(x) = 1 (22)
Vz(x) ~a- 2 X as X % -» (23)

2

F

Eliminating V(x) between (22) and (23) gives
F2
X = = 3 . (24)
2({1-2y)

Formula (24) is the asymptotic shape of the jet far downstream. Our numerical
results were found to agree with (24) for x large and negative. This
constitutes an important check on our numerical scheme.

The solutions of Fig. 5 for F < F, are also solutions of the flow
configuration of Fig. 1(a). Therefore there exists a unique "rising bubble"
for each value of F smaller than Fo. This confirms Garabedian's“ findings.

Garabedian2 used a criterion of stability to suggest that the unique

£ physically significant "rising bubble” is the one for which F = Fo. Colling?

reported the experimental values F = 0.25. The discrepancy between this

experimental data and our theoretical value F, = 0.36 is presumably due to

the three-dimensionality of the real flow and to the effect of surface

‘l ‘l 'l 4
. .

tension. The bubble profile corresponding to F = F. is shown in Fig. 6.
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0 Froude number F = U/(gh)1/2 smaller than a critical value F.. Here g denotcﬁ

L] the acceleration of gravity. It is found that Fc = 0.36. In addition the proble

e of a jet emerging from a vertical nozzle is considered. It is shown that the

e slope of the Iree surface at the separation points is horizontal for F < F¢

:.,:. and vertical for F > F.. Graphs and tables of the results are included.
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